W\ X
R\ i~ e mw._.wEOZOmIQ
N> = -
LY . .rn4 B °
> P - 3 3 &
Rl ,) 5 . = 3 : i3
T A]
| { . :
y ’ ‘o K ¥ R ®
“ . \ _ 4
\ Y ¢
{ .. g
& g0 v &
: " B S

OMNICAL GALLERY

OmniCal Stakeholders:

Project Manager

Jocquéline Tristin Rallida® ¥ Michack o TVden

Muller - Bensch Du Plooy Erasmus wVillet
26058995 & ! 26175940, | 206284154 2043868 : 26118053

Lucky

Twala
23022857 '

<
“
=)
=)
-
-
=

LATTY

Ny,

PROJECT DESCRIPTION

OmniCal is a powerful day-planning, academic scheduling system, designed with students and
lecturers in mind.

OmniCal Allows the user to organize and put their time to better use, through arranging events and
even organizing their fimetables, by providing them with this easy-to-use and easy-to-understand
system. OmniCal can automatically search and develop a timetable for a student or lecturer
through means of academic records, extra modules as well as manual entries (for example, Sl or
assistant classes)

W\ X
R\ i~ e mw._.wEOZOmIQ
N> = -
LY . .rn4 B °
> P - 3 3 &
Rl ,) 5 . = 3 : i3
T A]
| { . :
y ’ ‘o K ¥ R ®
“ . \ _ 4
\ Y ¢
{ .. g
& g0 v &
: " B S

\vWﬂ P

f/
85,
Tf

USE CASE LIST

The list below indicates all of the use cases that OmniCal makes use of:

Event

Response

Receive information
from database
Send information to
database

Log in

Log out

Sign up

Create event

View timetable

If admin

If student

If worker

Help file

If English

If Afrikaans

If Zulu

If Sesotho

Close program

Database sends information to where it is needed

Database receives information from where it was created, changed or
used

Data is now accessible and editable

Data is no longer accessible and editable

Information is created in order for log in fo occur

Data is created to be sent to the database.

Data is accessed and can be viewed

All data is accessible and editable

Data for only that stfudent can be accessed and edited
Data for only that worker can be accessed and edited
No data used

Data is franslated to English

Data is franslated to Afrikaans

Data is translated to Zulu

Data is translated to Sesotho

All data is released

REFINED USE CASE LIST

The list below indicates all of the refined use cases that OmniCal makes use of:

Event Response

Receive information from Database sends information to where it is needed
database

Send information to Database receives information from where it was created,
database changed or used

Create event Data is created to be sent to the database.

View timetable Data is accessed and can be viewed

SELECTION PROPOSED OBJECTS

The table below shows the evaluation of proposed objects

Proposed objects synonym? | Outside | Exfernal | Unclear? | Acfion®
scope? | olke?

frnmAnnouncements
frmCalendar
frmmiCaliyFriend
frmEditModule
frrnEditTimetable
frmHome
frmlLicenseAgreement
frmnLogin
frmRegister
frmPreferences
frmsaethings
frmnViewData
frmViewstatistics
frimViewTimetable

frmlJpdate Admin
frmUpdateProfile

RN RS R R ENEN R RS EN RN I RN RS
Sy RN I IO T R I 1 1 RN N RN S N N I
N RNENEN RN ENENEN RN FIESENRNIENENEN
L I o B e I B I I I I
N RNENENENENENEN RN EN RS ENENENENES

PROPOSED OBJECTS

The table below shows the proposed objects

Admin
Module
Roster
sChedule
settings
Staff
student
Timetable

User

ASSOCIATION MATRIX

The table below shows the multiplicity and associations between objects

Timetable Settings
User Student creates | Admin creates
zero to many one or many
fimetables passwords
Timetable 5 created by one KK,
and only one
student
settings Iz created by one

and only one
adrmin

GENERALISATION = @@@U&&U @

The diagram below shows the gen and specialisation relafionships betwee

bJT

=

s,
-

:: Y Y

L

AGGREGATION RELATIONSHIPS

The list below depicts only aggregate relationships between the objects

Timetable contains Schedule and is therefore, an aggregate relationship.

The relationship between Preferences and IT Students/ Other Students / staff is an
aggregate relationship.

The relationship between Roster and Schedule is aggregarte.
Likewise, the relationship between Staff and Module is aggregate.
The relationship between Module and Roster is an aggregate relationship.

COMPOSITION RELATIONSHIPS

The list below depicts only composition relationships between the objects

User contains Student, Staff and Admin. These subclasses each contain their own
objects. This represents a composition relationship

Other student and student also represent a composition relationship

The relationship between Other Student and Schedule is a composition relationship.
Likewise, IT Student and Roster also represent a composition relationship

The relationship between Schedule and Timetable are composite.

The relationships between Admin and Settings/ All data are composite.

CLASS DIAGRAM

The diagram below shows the classes that we make use of as well as their inferactions

fimUpdarehfo(Sminglanguage)

stingloadLanguage(Shing
language)

veidchangelanguage
Sting(setUpLogininfo()
voidshowPassword()
voidhideFassword)
booleanvalidaieContactinfod
booleanvalidateGeneralinfo()

booleanvalidate UserType()

fmupdatefrofie(Singlanuage)
fmRegister(Stringlanguage)

fimUpdateProfile(Stinglanguage.
SMing userNumiber)

booleanisAdming
booleanisTStudent()
booleanisCtherstudento)
booleanisSiafy
SinggetNumberQ)
voidinvisbleSocialMedia()
voidvisibieSocialMedia))

fMmUpdateAdmin(stinglanguage)

changes

Seftings

Background_Image
Fonf_Name
Meet_The_Team_lmage

fimSettings(Singlanguage)

g longuage)
Sting gethumbsr)
sting0 leadLanguage()

woid changelanguagety

Student

Student_Number
Student_Name
Student_surmame

accesses

Statt

F Staff_Number
+ Staff_ Name

b Staff_surnarne
L staff_Initials

- Courss

Student_Initials

voidhideFont()
voidhideFictures)
voidshowFontQ
voidshowPictures)
sting(JloadLanguage()

voidchangelanguaged

Schedule

L schedule_ia
t Student_Number
- Moduke_Code

sSting(loadlanguage()

void changelanguage()

changes’ sets 1T Student

saves to

frmHome(Shing language)

sting getNumbear)

siring) loadlanguage changes/
e Time Zone
woid changelanguage(y K>——>2 Language
o.n b Show Date
o.n
woidl showAll(y
woid hide)
accesses
1Module
r Module_Code
b Description
- Credits
r Monday
F Tuesday
r Wednesday
F Thusday
F Friday
r Venue

Preferences

| Student_Number

Course t Venue contains
—
Year r Monday
if Other Student

fimHome(Sting r Juessaay

I Wednesaay
Sting gethNumbern() + Thursday

- Friday

frmTimatabls(Singlanguage)
weidhideEdift)

voidshowEdit()

1

savesto

Roster n

r Module_Code

- Wednesaay
b Thursday
- Friday

frimEditiodules(Singlanguage)

woidhideErorst)

Timetable

Schedule_id
Student_Number
Semester

Year

fimViewTmetable(Shinglanguage]
fimRoster(Stinglanguoge)
fmTimetable(Stinglanguage)
veichideEdit)

veidshowEditt)

ACTIVITY DIAGRAM

The diagram below shows the objects and activities that our system uses

Student not
found/Registered

A v v v v v A \d
Users) A -
Edit TmeTable (Update Pmﬁle)(preferences) (Meelﬁ\eteam) Qhew'ﬁmetab\e) (Ca\\aﬁlend) (Ed\tmudules) (admmseﬂmgs) (View data)

' | | '

A A A B B B B B B

AN :.:::.:t

SYSTEM DESIGN VS SYSTEM ANALYSIS

System Analysis
Aspects

Mapping and description of mapping

System Design
Aspects

System Analysis aspects to
e improved

1. Scope Definition

1a

When conducting the physical design and integration phase of system
design, the following must be taken into account regarding scope
definition:

1. Identification of baseline problems and opportunities

2. Negotiation of baseline scope

3. Assessment of baseline project worthiness

4. Development of baseline schedule and budget

5. Communication of the project plan.

Regarding procurement of soffware and services, the following must be
taken into account:

1. Research technical criteria and options

2. Solicit proposals or quotes from vendors

a. Procurement
(of software and
services)

N/A

2. Problem Analysis

2C

When conducting the physical design and integration phase of system
design, the following must be taken into account regarding problem
analysis:

1. The understanding of the problem domain

2. The analysis of problems and opportunities

3. The analysis of business processes

4. The establishment of system improvement objectives

5. The updated or redefined project plan

6. The communication of findings and recommendations

b. Decision
Analysis (for
infegration)

In ferms of system
development, the more
we improve our logical
design, the more we solve
problems which we didn’t
nofice during this system
analysis phase (for
example, changing
administration seftings for
security purposes)

SYSTEM DESIGN VS SYSTEM ANALYSIS

(Continued)

3. Requirement

3b

c. Decision

Due to the improvement in problem analysis,

Analysis Analysis (for requirements need to be adjusted accordingly
When conducting the physical design and infegration phase of system software and |(for example, system requirements need to be
design, the following must be taken into account regarding requirement [services) adjusted to specific administration requirements
analysis: like credentials)

1. The identification and expression of system requirements

2. The prioritization of system requirements

3. The updated or redefined project plan

4. The communication of the requirements statement

Regarding decision analysis for integration, the following must be taken

info account:

1. The validation of vendor claims and performances

2. The evaluation and ranking vendor proposals

3. The awarding of contracts and debriefing vendors
4. Logical de d. Logical design is improved in order to bring all
Design Implementation [analysis together and simulfaneously provide the

When conducting the physical design and infegration phase of system
design, the following must be taken into account regarding logical
design:

1a. The structure of functional requirements

1b. The prototyping of functional requirements

2. The validation of functional requirements

3. The definition of the acceptance test cases

of soffware)

user with a fully functional system. As there are
some inconsistencies between a few system
analysis phases, the phases need o be
improved so that we have consistency when the
logical design is completed (for example,
recording and allowing the change of
administration credentials)

SYSTEM DESIGN VS SYSTEM ANALYSIS

o. Decision [5d e. Design (and N/A
Analysis infegration)
When conducting the physical design and integration phase of
system design, the following must be taken info account regarding
decision analysis:

1. The identification of candidate solutions

2. The analysis of candidate solutions

3. The comparison of candidate solutions

4. The updated or redefined project plan

5. The recommendation of a system solution

The decision phase of system design takes the following into
consideration:

1. The design of the application architecture

2. The design of the system databases

3. The design of the system interface

4. The packaging design specificafions

5. The updated project plan

Ai\uJﬁNIN‘

YALINONOM

=
>
7
=
2
9
=
=5

SYSTEM DESIGN (PHYSICAL DESIGN)

« OmMniCal uses a Model - Driven Approach which is comprised of:
« Modern structured design: a system design technique that
decomposes the system’s processes info manageable
components

- Information engineering: Information Engineering models are
pictures that illustrate and synchronize the system’s data and
processes.

« Prototyping: a small-scale, incomplete, but working sample of a
desired system

« Object-oriented: fechniques are used to refine the object
requirements definitions identified earlier during analysis, and to
define design specific objects

12 POINT PLAN TO IMPROVEMENT

Before system design took place, the first 5 phases of the system analysis process was mapped
against the tasks of the procurement phase representing our system design.

After analysing the system analysis aspects, we created a 12 point plan to better the aspects
that needed improvement:

Add a registration process

Add a home screen

Add a "View Timetable Out Of Editor” option
Add a "View Statistics” option

Add a “User Preferences” option

Add an "Edit Modules” option for staff members and limit their access
Add a "Meet The Team” option

Add a "View in Calendar” option

Add a “Update profile” option

10 Add a "Seftings” option for admin only

11. Add a “View data” option for admin only

12. Add an “Update Admin Info” option

VWONOOSE WN —~

W\ X
R\ i~ e mw._.wEOZOmIQ
N> = -
LY . .rn4 B °
> P - 3 3 &
Rl ,) 5 . = 3 : i3
T A]
| { . :
y ’ ‘o K ¥ R ®
“ . \ _ 4
\ Y ¢
{ .. g
& g0 v &
: " B S

BSCTT SECOND YEAR FIRST SEMESTER

ITRW21208RE2 A C T 2|&.....I:72~3. Accsu

12601 (6o I ‘ 12 sos

56: ITRW2il ~ 56: TR _212-,,,»3-“44 ‘I'm 2 'li I'I'Rw:n

RN (o e 3l BGO2 ,

I
N212 56 ‘mawm !! mz\nm ,
13103 4.4 3103

STRUCTURED DIAGRAM

The diagram below represents our system’s structured diagram

1.0
Approve
log in

/ number 'XD
1.2 Student 1.3

1.1
Create number Create Sign up
Timetable calendar details

Timetahle Student Student Calendar AEEEFTEG
number number details
121 131 H;é‘:c.'fd
Edit Edit als
timetable calendar
1.1.1 1.1.2
Studient Accept
endsts! details
. Student incorrect
Timetable number Student Calendar ditails
number
Rejected Accepted
deizils details
Schedule Calendar
Reject Student

sign up

FILE/SERVER ARCHITECTURE

The diagram below file/server architecture of our system

User

1) 3)
) Entire
Presentafion iables -
— 3l B ile server
Presentation R T.?,g;se
Application and ry
data manipulation
—_—
| all executed here | 4)
. ry o Table
locked
2) re*s:t:nse o
client
5 Re?:est to returns
entire update et table
tabies delete, ':::]'l':
with read tables v
any or insert i Y
updated 1or
records more [" lL::E?:StEd
records | _| Only serves to store
| data. No service
s » Other than storage
and transpon { ----------------------
. 8) Unlock tables
\provided y,
A 5)
2) Response &) entire
Request to request tables
to returns with any
update, entire updated
delete, tables records
read or are
insert 1 returned
or maore f
records

\ Presentation,

application and data
manipulation are all

kexecuted here

v

CLIENT/SERVER ARCHITECTURE

Fresentatian e
Laar |

—r

Presentation
logic all executed

e

inpat
andior

commands
for
processing

k.

here

A

Output and

instructions
for G

The diagram below client/server architecture of our system

SOL

Application and

data manipulation

are executed here
Mainframea

= Reads andior

uplaies

dabase
acebook
er i
=

DATA RIBUTION

The diagram below shows how our data is disfributed in our daftabase

SQL Server:
Master table:
Announcements

SQAL Server:
Master table:
Admin

S0L Server:
Master table: %
calendarevents

SOL Server:
Master table:
Course

SQL Server:
Master table:
GuUl

SQL Server:

Master table: Europe:
Module SQLiServer:

database server

SQAL Server:
Master table:
Period

A

SOL Server:
Master table:
Preferences

SQL Server:
Master table:
Requests

SQAL Server:
Master table:
Raoster

SQL Server:
Master table: %
Schedule

SQL Server:
Master table:
Staff

SQL Server:
Master table:
Student

W\ X
R\ i~ e mw._.wEOZOmIQ
N> = -
LY . .rn4 B °
> P - 3 3 &
Rl ,) 5 . = 3 : i3
T A]
| { . :
y ’ ‘o K ¥ R ®
“ . \ _ 4
\ Y ¢
{ .. g
& g0 v &
: " B S

)“

ITRW2|]
12 GOI

2™ wzn_ 5-6

. ! m
o7 ﬁmﬁz (5.6
08 -

ITRW!I

!’l '

T 2I4,~.L2\,4. Accsu

‘le sos

W 348 I'I'RW2 ll -4: I'I'RW2I|

B 602,
Im'Wm

W

LOGICAL DATA FLOW

OmniCal’s Primitive Data Flow Diagram shows a more detailed flow of data between
events than the Event Data Diagram . This is our logical data flow diagram

FEY3

I Adriksare

PHYSICAL DATA FLOW DIAGRAM

The following diagram represents OmniCal’s physical data flow

SQL Select:
View

—_— _—

(4 Request ;
— mySQL: Timetable

View

Timetable I

mySQL: Schedule A—
SQL Insert: T, PDF file; Roster:

IT course, Current
Year and timetable

PDF file; Roster: semester .
Automatically \\;\{:n7fp|_ -
iew timetable
senetragfd button clicked
imetable

1

If course IT g .
: Win 7 GUI:
Automatic Wi/ Ul] Enter

timetable

relevant
data

Choose Client signs
Course up

c# D | "
_ C# /

Win 7 GUI:
PDF file; Roster: Submit Win 7 GUI:
Automatically details for | account Confirmation
SQL Insert: generated of successful
IT course i]

g timetable {0 :

Year and “ e
semester A —— Store

u mySQL: Timetable details
Win 7 GUI: I:EI mySQL: Student
\ C#) SQL Insert:

SQL Update: succesful save Detail

edited confirmation N

timetable stored
in

X
. database
Win 7 GUL:
save timetable
button clicked Win 7 GUI: g
% G
e ——— Print timetable Z
button clicked
3 | Print
N timetable

6

Save
timetable

\ C#),

SQL Select:
View Printed
Request Timetable

n mySQL: Timetable

ERSON/ MACHINE BOUNDARY

The following diagram represents OmniCal’s physical data flow
with a person/ machine boundary line

SQL Select:
View

A | Request :
| —— mySQL: Timetable

View
| Timetable:

u mySQL: Schedule Gy | o
— = & PDF file; Roster:
SQL Insert: \ # '
il Current

IT course,
Yearand Performed
PDF file; Roster: semester by PeOple Win 7 GUI:

Automatically View timetabl

iew timetable
generated button clicked
timetable

timetable

3

If course IT - : ' I
Atomatic Win 7 GUI: Win 7 GUI: l Enter
timetable Choose Client Client signs relevant

Course up data
cr L&
Win 7 GUI:

PDF file; Roster: Submit i
& Win 7 GUI:
Automatically details for | account Confirmation

SQL Insert: generated
Performed IT course, ! . of successful
timetable / 9 s
by Computer Year and p]

semester
Store

n mySQL: Timetable details
Win 7 GUI: —>I=I mySQL: Student
\ C# SQL Insert:

SQL Update: succesful save \ i Dot
edited confirmation ctals
timetable

stored
in
database
Win 7 GUI:
save timetable \
button clicked Win 7 GUE: 5
Client Print timgtable 7
button clicked

—_— Print
timetable

6

Save
timetable

G Performed
by People

\ G# /

SQL Select:
View Printed
Request Timetable

n mySQL: Timetable

MANUAL UNIT

The following diagram represents OmniCal’s manual unit

D My3QL Table:
Schedule

Automatically

== e Generate IT Course
ourse Schedule —lTimetabIe

Preset Timetable

D | MysaL Table:
Timetable

SOl SELECT SOL INSERT (or 0L

) UPDATE):
Timetable Timetable
Load Timetable lSave Timetable l
Timetable .
imetable
Timetable Timetable
Interface - - (table and form))
Print Timetable] »{| Printer
imetable
Save Timetable (PDF File} PC

Storage

v

as PDF

W\ X
R\ i~ e mw._.wEOZOmIQ
N> = -
LY . .rn4 B °
> P - 3 3 &
Rl ,) 5 . = 3 : i3
T A]
| { . :
y ’ ‘o K ¥ R ®
“ . \ _ 4
\ Y ¢
{ .. g
& g0 v &
: " B S

LOGICAL DATA

OmniCal makes use of a MySQL database that contains 13 tables which communicate with
the users as follows:

_ roster v _| module v | calendarevents ¥ _| announcements v
module_module_code VARCHAR(7) module_code VARCHAR(7) userlD VARCHAR(S) announcements_id INT(3)
St INT(1) > description TEXT date VARCHAR(20) » student_number VARCHAR(S)
" date VARCHAR(20)
venue VARCHAR(45) credits INT(2) start VARCHAR(S)
monday ¥ ARCHAR(S) lru language VARCHAR(3) end VARCHAR(S) start_time VARCHAR(S)
tuesday ¥ ARCHAR(S) | | semester TEXT event V ARCHAR (45) end_time VARCHAR(S)
wednesday VARCHAR(S) Jl > year INT(1) venue VARCHAR(20) > details VARCHAR(255)
H
thursday VARCHAR(S) > staff number VARCHAR () > venue VARCHAR{100)
) > starred VARCHAR(L)
friday VARCHAR(S) > B
|anguage VARCHAR(Z) F _| preferences v seen VARCHAR(1)
roster_id INT(11) I preference_id INT(11) description VARCHAR(255)
>
@ module_module_codel VARCHAR{7) » default_language V ARCHAR(45)
|
@ module_language VARCHAR(3) I &l _announcements V ARCHAR(45)
> | * course_announcements Y ARCHAR (45) :' staff v
| .
| # show_date VARCHAR(4S) Ly staff_number VARCHAR(E)
1 » automatic_time_zone VARCHAR(45) -i > password TEXT
= ahed Ien\ v time_zone VARCHAR{45) I > initials TEXT
_ schedu
:l admin A student_number ¥ ARCHAR(E) | 5 name TEXT
L schedule_id INT{11)
admin_id INT(4) & staff_staff_number VARCHAR(S) N S ———
. “ module_code VARCHAR(7) |
admin_passw ord V ARCHAR{45) @ student_student_number VARCHAR(E) | f
student_number YARCHAR(S) #id_number Y ARCHAR(13)
> time_changed VARCHAR(45) = > | L TExT
> * course
> IP_address Y ARCHAR(45) venue VARCHAR(45) 4 o ber VARGHAR(LD
S day VARCHAR(45) | cellphone_number (10)
period_id VARCHAR(S) l email_address TEXT
% period_period_id VARCHAR(S) T address TEXT
» _lstudent v city TEXT
v + student_number VARCHAR(E) postal _code VARCHAR(4)
m gui v | | » password TEXT >
qui_id VARCHAR(3) I I initials TEXT
*login_background V ARCHAR{100) I I » name TEXT . v
» team_background VARCHAR(100) ? TEXT
fn @) I I surname course_name ¥ ARCHAR({255)
2 font VARCHAR(20 *id ber VARCHAR(13
st w0 | | 16 number (13) > faculty VARCHAR(100)
efault_|anguage VARCHAR(10] e TEXT
5 I I course > school VARCHAR({ 100)
— Il ph ber VARCHAR(10
| celphane_num aer (10) programme VARCHAR(100)
| email_address TEXT
E >
I address TEXT
| requests v I city TEXT
request_id INT(3) + postal_code VARCHAR(4)
» requesting_num ber VARCHAR(S) _ period ¥ 2 LoginCount INT(11)
* requested_num ber VARCHAR(S) period_jd V ARCHAR(S) ¥ schedule_schedule_id INT(11)
> status VARCHAR(E) > time TEXT ¥ schedule_student_number VARCHAR(S)

>

DATABASE SCHEM

OmniCal makes use of a MySQL database that contains 13 tables which

communicate with the users as follows: e

colgui_id char1] [PK]
lModuin ol Seaff
- oG collogin_background char(200)
thleslendsrsvents colotulsiiogn LHAM K] oSt LHAH [FR]
colUserlD Int11) [FK] collescrption TEX) Controls | corvasswors - colTeam_background char{200)
Kiodis NI .
colDate char{45) [PK] = St Bxl DG colFont chan{ 200
colanguage LAAM |MK|
colama (=1 = .
colStart chari@) [PK] J— - I colDefault_language char(300)
o cofumamea [+ 1]
colEnd charig) cal¥ear w b Has DG
calnLm LA
. cottatMum LIAM [FK] 4 .] e
colEvent char(43) [PK] wiislfen LHAH tiSichodun
LT Xl - "
colenue MEDIUMTEXT fomme - caRicheculo®l IN1 (MK
Mo BE caltmat 1EX1 coMooulsogn LHAN [FK]
HH colrsdmnoss EXI coRiarMum LHAH
wed ki ocokaty =] colVenus LHAH
calRsmniL TR Mo AE. e LA CiMaone colay AN
Sets MNa AE Sots
collmntassword LHAMAES) H wlProloronces je| colForioan) LHAH
collime LHAHEE] colFrelerence®d M) |FR] H
Has
comAatesss LHAMIME) HH comrfaumanguage Lrarges)
Mo RE. colAnnnourcomenis HIRAHT
Mo AE.
coljourseAnnounos HINAK Y ” 1|;||HE;||.|E[5
catihowlime tERARCY Sets D:Mane
| colRequest_id int(11) [PE]
thiRaster coluriolite imadong HIRARY kol
Mo HE. ol Soutont 5 N
ocollimazone CHAHIEE colReguestingMumbsr chan(@)
colRoster_id Imt(11} [PK] HH comitugensiem GHAH k
colRequestedMumber char(d)
colVenue Char{45) A TR
colinials EXI colStatus char(d)
colMondsy Chan45)
colName Tex!
colTuesday Char(45) e — exr
N D:G
coliednesday Char(45) No RE callfium LAk H
Hasz ' coRiedP®dum LHAH el Pariod
colThursday Char({45) iCou Has
- Mo HE cokiourse EX! colfpriodld LHAH [FR]
colFriday Chari45) cokursoMama TEXT |FH] cateman - H cattme TEXI
calracuRy EX1 (s} o4
colMedule_code Chan7) calfdmss BXI
cofsofool [-+1]
colLanguage Chan3) P ———— carany e

.mm!@" '

DATABASE ARCHITECTURE

OmniCal makes use of a MySQL database that contains 13 tables which communicate with

A

Users
(Students
and Lecturers)

Programmers

Administrative
Users

Users] info OMMICAL o
) Administrative
Information €——— User
(Built-In} System
» Studentﬂ_ec’[urer
Time-Table
% £ —
MySql
Studentl'Ledurer Data-base <
Personal Programmer
info ﬁ
Y StudentLecturer OMNICAL g
File-Based % > Reglstfratmn Infarmation - »
Data System Il System A
[For Admin]
_ StudentiLecturer User (Student
(Built-ln) «—»' Time-Table or Lecturer)
A
L} Curriculum
info
Module
Infa

the users as follows:

Calendar
Events

Madule
Infa

Preferences

v and Language

File-| Eased

Data System
[For S‘t;ndard Student/Lecturer

>

» Font, Image and
Default-Language
Settings

DATABASE CAPACITY PLANNING

The field sizes were calculated by adding the maximum length of each field for each table.

STEP 1 - Sum the field sizes:

Total characters: 3 140
- module = 181

- staoff = 465

- preferences = 105

- admin = 139

- course = 555

- student = 465

- schedule = 121

- period =20

- roster = 95

- announcements = 655
- calendarevents = /8
- Qui =233

- Requests = 27

DATABASE CAPACITY PLANNING (Cont)

The record sizes were obtained as the field sizes in Step 1 so that the following deductions can be made:

STEP 2 - Record size x entity instances
(using growth over 3 years):

Growth =14x 14 x 1,4 =2,744

module: 181 * 40 * 2.744 = 19 866.56

staff: 465 * 50 * 2.744 = 63 798

preferences: 105 * 80 * 2,744 = 14 406

admin: 139 * 20 * 2.744 = 7 628.32

course: 555 * 100 * 2.744 = 152 292

student: 465 * 1000 * 2.744 = 1 275 960
schedule: 121 * 1000 * 2.744 = 332 024

roster: 96 * 1000 * 2.744 = 263 424

period: 20 * 10 * 2.744 = 548.80
announcements: 655 * 10000 * 2.744 = 17 973 200
calendarevents: 78 * 10000 * 2.744 = 2 140 320
Qui: 233 * 2 * 2744 =1 278.70

requests: 27 * 1000 * 2.744 = 74 088

STEP 3 - Sum the table sizes:
Total = 22 261 415,38

STEP 4 - Add slack capacity buffer (10%):
22 261 415,38 *0.10 = 2226 141,54

Anticipated database capacity: 2,3 GB

DATABASE; EMENT SYSTEM

RCHITECTURE (DBMS)

OmniCal’s database management is illustrated below:

System Analyst Application End
& Programmers Users

Database Designers

Omnical
CASE Tools: Application System
-Drawio Development Tools: & Client
4 -ME Visual Studio C# |
Qi AR i AR, PoDBUS
h
MySQL Workbench 1
OMMICAL
DBMS
MySQL .
'E’:“’?Q'[; Srer.‘t’.er C# and Visual (Data <
- (LR Lt Studio Manipulation
» Language) Language)
MySQL Database Engine o«
r s
A 4

USER

METADATA

W\ X
R\ i~ e mw._.wEOZOmIQ
N> = -
LY . .rn4 B °
> P - 3 3 &
Rl ,) 5 . = 3 : i3
T A]
| { . :
y ’ ‘o K ¥ R ®
“ . \ _ 4
\ Y ¢
{ .. g
& g0 v &
: " B S

TAXONOMY FOR COMPUTER
GENERATED OUTPUTS

OmniCal’s computer generated outputs are laid out in the table below:

Definition Internal output

Turnaround Output

External Output

Delivery

Printer Summary, detailed and/or Information will be printed Information will be printed
exception report will be from the PDF file or from the as a hard copy. An
printed from the PDF file or program directly for example would be the
from the program directly for reference, in terms of user’s timetable
infernal use, in terms of diagnostic reports.
diagnostic reports.

Screen Detailed, summary and Information will be displayed Information will be
exception information will be on the monitor which could displayed on the monitor
outputted onto the monitor also be used as input at a which could. For example,
for internal use, in terms of later stage. In terms of the user’s fimetable (out of
displaying the databases. databases and/ or other editor).

saved records like texffiles.

Multimedia Summary report will be Information will be stored in Information will be created
created and stored in a PDF PDF format for reference, in and stored in a PDF format,
format for internal use, in terms of diagnostic reports. An example would be the
terms of diagnostic reports. user’s timetable

Hyperlinks Not applicable Not applicable Connects users to the

OmniCal Facebook and
Twitter accounts

OUTRUT DESIGN GUIDELINES

OmniCal has followed and applied the following output guidelines:

Guidelines Applied
Simple to read and interpret v
Title for every output v
Time stamp every output -
Reports and screens should include sections and headings to segment
information v
Form base output - clearly labelled fields v
Tabular outputs - clearly ladled columns v
Reports should include legends to interpret headings v
Print and display only required information v
No manually editable information -
Evenly spread output v
Easy to edit/remove or find output v
Computer jargon and error messages should be omitted from all outputs v
Output information must reach recipients while the information is

perfinent v
The distribufion of computer oufputs must be sufficient to assist all users v

W\ X
R\ i~ e mw._.wEOZOmIQ
N> = -
LY . .rn4 B °
> P - 3 3 &
Rl ,) 5 . = 3 : i3
T A]
| { . :
y ’ ‘o K ¥ R ®
“ . \ _ 4
\ Y ¢
{ .. g
& g0 v &
: " B S

TAXONOMY FOR COMPUTER:
GENERATED INPUTS

OmniCal’s computer generated inputs are laid out in the table below:

Process Method Data capture Data Entry Data Processing

Keyboard - User information entered by the user is recorded in the Data is entered through the keyboard: Data inputted via keyboard runs through a
database which is collected during the registration. - Login validation process as a key is pushed.
- Additional information regarding the user’s timetable is - Register
acquired through the timetable creation process - Timetable details

- Changes to data by admin
- Editing/ Adding modules by staff

Mouse - User information entered by the user is recorded in the Data is enfered through the mouse: - Further validation processes of data are
database which is collected during the registration. - Login executed once the mouse has clicked on
- Additional information regarding the user’s fimetable is - Reqister certain GUI components.
acquired through the timetable creation process - Timetable detaqils - Once the mouse has been clicked, the
- Navigation through the OmniCal system is dependent on - Changes to data by admin data is processed and stored in the
this component along with GUI components such as buttons, - Editing/ Adding modules by staff necessary and applicable data store
radiobuttons, checkboxes, comboboxes, scrollbars, etc. - Navigation through OmniCal

Touch Screen - User information entered by the user is recorded in the Data is entered through the mouse: - Further validation processes of data are
database which is collected during the registration. - Login executed once the mouse has clicked on
- Additional information regarding the user’s timetable is - Register certain GUI components.
acquired through the timetable creation process - Timetable details - Once the mouse has been clicked, the
- Navigation through the OmniCal system is dependent on - Changes to data by admin data is processed and stored in the
this component along with GUI components such as buttons, - Editing/ Adding modules by staff necessary and applicable data store

radiobuttons, checkboxes, comboboxes, scrollbars, etc. - Navigation through OmniCal

RANSITION DIAGRA

OmniCal’s transition diagram is laid out below:

STATISTICS
SCREEN STATISTICS
TIMETABLE SCREEN
.
. PREFERENCES
UPDATE INFO 3 user clicks i
@ =
= "Statistics” e
SCREEN o % ki
¢, 5 Button A £
5. 3 5 g
%, @ g 9
w5 s “
‘4 2 g
User clicks %, 2 [; & CALENDAR
"Update Info" . . _ 25
Button ¥ Userlogsin User logs in or registers 4
as Admin as Student or Lecturer
‘_Ifinput is valid) LOGINREGISTER (If input is valid)
ADMIN HOME SCREEN < STUDENTILECTURER HOME SCREEN
-
Lal i
A User clicks "Log Out” < \ :;J'-ISer clicks "Megt
User clicks "Log Qut” 1 e Team” bytton
MEET THE TEAM
SCREEN
x
[=]
=
=
=
o User clicks -
o w " @
User clicks 3 View Dala o
"Settings” E Button)
= 4 ANNOUNCEMENTS
Button p SCREEN
SETTINGS L 4 %
[»]
DATABASE TABLES e
DISPLAY
CALL FRIEND UPDATE PROFILE
SCREEN SCREEN

EDIT MODULES
SCREEN

INPUT DESIGN GUIDELINES

OmniCal has followed and applied the following input guidelines:

Guidelines Applied

Capture only variable data

Do not capture data that can be calculated or stored in computer programs
Use codes for appropriate aftributes

Include instruction to complete forms

Minimize handwriting/typing

Sequenced data entry (Left to right and top to bottom)

Use design based on known metaphors

D N N NI N N NN

W\ X
R\ i~ e mw._.wEOZOmIQ
N> = -
LY . .rn4 B °
> P - 3 3 &
Rl ,) 5 . = 3 : i3
T A]
| { . :
y ’ ‘o K ¥ R ®
“ . \ _ 4
\ Y ¢
{ .. g
& g0 v &
: " B S

CHART LIST

OmniCal has 5 dialog charts split between 10 forms as indicated below:

Unigue menu options
Log in

Home screen

View Timetable

Meet the Team

Main menus that are identical

View calendar
Preferences
Announcements
Statistics
Update Profile
Cal Friend

LOGIN MAIN MENU

OmniCal’s login form has the following main menu layout:

0
Log-in
main menu
System
4\
1 2
File Help
F 3 T
v ¥ ¥ VL ‘L
1.1 12 1.3 2.1 22
| SnEmEE Minimize Exit Log-in Log-in
anguage
F 3
1.1.1.7 1.1.12 1.1.13 1.1.14
English Afrikaans Zulu Sesotho

LOGIN SOCIAL MEDIA MENU

OmniCal’s login form has the following social media pop up menu layout:

0

Log-in socidl
media pop
up Mmenu

System

T

v v v v

1 2 3 4 5

Facebook Twitter Youtube Website Drive

STUDENT HOME SCREEN MENU

0

Home screen
menu

System

|

A student using OmniCal would see the following menu on the home screen:

|

y

y

y

1 2 3 4 5 6 8 Q
Timgfile CJ;";W Preferences Statistics I"s.-‘l?::];he Announcements |Cal My Friend Ugga;e Log Out

STAFF HOME SCREEN MENU

A staff member using OmniCal would see the following menu on the home screen:

0

Home screen
menu

System

|

!

y

!

1 2 3 4 S 6 8 Q
Timﬁ?ile C:;UEEW Preferences Statistics M?::l;he Announcements | Edit Module Ugga;e Log Out

ADMIN SCREEN MENU

An administrator using OmniCal would see the following menu on the home screen:

0

Home screen
menu

Systemn

T
v v v v v

1 2 3 4 5

View Data Aﬁﬁﬁfﬁ - Settings Statistics Log Out

VIEW TIMETABLE MAIN MENU

OmniCal’s view timetable form has the following main menu layout:

0
View
Timetable
main menu
System
1\
Y 5 h
1 2 3
File View Help
A A r Y
Y A A Y Y Y A A Y A A l A l
1.1 12 1.3 14 15 16 1.7 2.1 3.1 32 33
Save S .
Choose . Open _ Save TimeTable Print Return Exit Vlew in Help File Shortcut Pgnod
language Timetable | | TimeTable as Home editor Keys Times
1.1.1 112 113 1.14 121 122
English Afrikaans Zulu Sesotho PDF File Timetable

MEET THE TEAM MAIN MENU

OmniCal’s meet the team form has the following main menu layout:

Meat The
Team main
menu

System
Y

J' ¢ Y
h 4 A 4 4 X 55 I I

1.1 12 1.3 . 3] 35
Choose Return . Omnical Omnical
language Home Bt Team Stakeholders Help File Shfert;'m
y M
Y
— | v v v ¥
221 222 223 224
1.1.1 1.12 1.13 1.14
Project System System System
English Afrikaans Zulu Sesotho manager analyst builders Devslopers
2231 2232 2241 2242
Lead Assistant Lead Assistant

builder builder Developer | | Developer

CUSTOM MAIN MENUY

OmniCal has 5 forms as listed in the dialog chart list to which this custom main menu applies:

0
Main menu
System
1\
Y
‘ l
2
File Help
¥ 3 F 5
Y
A4 A4 A4
1.1 12 1.3 '[l
2.1 22
Choose Return Exit
language Home Help File Shortcut
keys
F
Y
1.1.1 1.12 1.13 1.14

English Afrikaans Zulu Sesotho

W\ X
R\ i~ e mw._.wEOZOmIQ
N> = -
LY . .rn4 B °
> P - 3 3 &
Rl ,) 5 . = 3 : i3
T A]
| { . :
y ’ ‘o K ¥ R ®
“ . \ _ 4
\ Y ¢
{ .. g
& g0 v &
: " B S

A

BRI

USE CASE LIST

Below is a list of Use Cases that our system makes use of:

Event

Response

Receive information from
database

Database sends information to where it is needed

Send information to
database

Database receives information from where it was creafted, changed or
used

Log in Data is now accessible and editable
Log out Data is no longer accessible and editable
Signh up Information is created in order for log in fo occur

Create event

Data is created 1o be sent to the database.

View timetable

Data is accessed and can be viewed

If admin All data is accessible and editable

If student Data for only that student can be accessed and edited
If worker Data for only that worker can be accessed and edited
Help file No data used

If English Data is translated to English

If Afrikaans Data is franslated to Afrikaans

If Zulu Data is translated to Zulu

If Sesotho Data is translated to Sesotho

Close program

All data is released

STEP 1: TRANSFROM FROM ANALYSIS TO DESIGN

Below is a list of use cases that have been refined for our system:

Event Response

Receive information from |Database sends information to where it is needed

database

Send information to Database receives information from where it was created, changed or
database used

Create event Data is created to be sent to the database.

View timetable Data is accessed and can be viewed

STEP 2: UPDATE USE CASE DIAGRAMS

Below is the use case diagram which reflects the interaction of our system:
|

N Create Account -
— Choose type of
workout <

»

View Improvenemt

| Schedule Subsystem

— *login <

Sign up as -
user or S i L_. Create . | % _

Student Schedule T
> User
View
Schedule ™ Administrator|
Change
language =
* Schedule
View Data
Base
Save details
in Database
Save
Schedule
log

v

Out

STEP 2: UPDATE USE CASE DIAGRAMS (Continued)

Below is tThe use case diagram which reflects the depends on, extends and includes interaction of our system:

Student login | r_’ ;
tudent login
7y ———» | User
: 2 e
<<ncludé>> <<intludex> Student | <
Iy 3 <<inclgdé;> <<intlude>>
. ET |
I
ign u in

User

-
7 N
4\\
|\ =
-
-
-
-
=
_
—

\“ \ -y

STEP {: IDENTIFY AND CLARIFY USE CASE DESIGN C

The redefined use cases were used and expanded to clarify the design classes

Interface classes

Controller classes

Entity classes

Log in Updatelnfo View calendar
Home UpdateAdmininfo Announcements
EditModule UpdateProfile View Statistics
Reqister View Timetable
View dafa
Timetable

License Agreement

Preferences

STEP 2: IDENTIPY CLASS ATTRIBUTES

Upon further Inspection of the refined use-case’s it can be seen that there
are no discrepancies for attributes between the new and old use-case’s.

STEP 3: IDENTIFY

L

5SS

Below is a partial summary of use case behaviours

BEHAVIOURS AND

Behaviors Automated/manual | Class type
Receive fimetable Automated Enftity
Check if empty Automated Entity
Display Timetable Automated Entity
Send user preference Manual Entity
Send user info Manual Controller
Send user timetable Manual Entity
Send user language Manual Entity
Retrieve user preferences | Automated Enftity
Retrieve user info Automated Interface
Retrieve user timetable Automated Enftity
Refrieve user language Automated Entity
Retrieve password Automated Controller
Retrieve username Automated Controller

STEP 3: IDENTIFY

CLASS

BEHAVIOURS AND

Below is a partfial summary of use case behaviours and responsibilities in the form of CRC cards

Object Name: View Timetable

Object Name: Send User info

Sub Object:

Sub Object:

Super Object: View

Super Object: update

Behaviors and Responsibilities

Collaborators

Behaviors and Responsibilities

Collaborators

Receive user timetable
Check for emty timetable
Display user timetable

Edit Timetable

Send user preference
Send user info

Send user timetable
Send user language

Edit Timetable
user preference

Object Name: Receive user info

Sub Object:

Super Object: retrieve

Behaviors and Responsibilities

Collaborators

Retrieve user preference
Retrieve user info
Retrieve user timetable
Retrieve user language

Retrieve password
Retrieve username

Login
edit timetable
edit preference

STEP 3: IDENTIFY

CLASS

==interface==

BEHAVIOURS AND RI

Below is the sequence diagram of our system:

Timetable

User

View own timetable

>

==controller==
View time table

Timetable

viewTimetable(user)

o .

timeTable(User, Name)

timeTable

o e =

‘Database

cearchTable(UserName)

fimeTable

timeTable

>

STEP 4: MODEL OBJECT STATES

Below is the Statechart diagram of our system:

' Ty
Freference

A .y

Fequest user preferences
user preferences send

Ti!netahle - - Language of form
initial state” o colacted view o«
» user table request
Y e l
A 4 ™y i N
Language
user table send Database
Fequest to edit table N) ., A
IS A 4 ~ new updated table send
Edit time table
user table send
<
A
T Language of form

Time table final sate

<<boundany>»

W-14 Module Display

Transitory

STEP 4: MODEL OBJECT STATES

Below is the partial design class diagram of our systems use cases:

besse e s meJond by s e -

<choundary:

W-13 Announcemeants Display

Transitory

Language
Mame_of_language : <<conirol>>
<<CONIOl=> ' _ol_language : Schedule
Module String
- Content : Siring - Dates - Date
* . . <<boundary>x»
—»| -Nama :String < " - Events - String W-12 Schedule Display
- Deseription : String . gefLanguage | -Times:Sting ;
tl
> -Lecturer :String seflanguage
savelanguage getSchadule - Usd byr======rssssanesnny Tranallory
geiModule selSchedule
Persistant Is saveSchedule
seifodule . Viewed updateSchedule
o1t
updateModule by delete’Schedule
deleteModule Is Is
Viewad Selected Persisient
by by
Persistant
R Is
1 0. viewed
<<CONIrol=> cior by 1 Is created
L4 e L 4
Announcemants Uer o1 M by
- Heading : String Timetable
- Text: String - Name : String Dates : Date
............... ’ - O - Events : Strin <<boundan>>
Uesd by 2 - Author : String 0..*| - Sumame: ?'t” ng : - g W-11 Timefahle Display
getAnnouncements - Phone : String - Times : String M- m e mas Uesd by================
satAnnouncaments - Address : String gefTimetable
updateAnnouncements - Email Address : String setTimetable Transit
delefeAnnouncements Password : String saveTimetable ransitory
) Is 1 updateTimetable
Persistent v'i‘;ad I deleteTimetable
k. |
1 0.*
Y Persistent
Is
writlen | |
by Administrator Student Lecturar
0.*] -Admin_ID :String - Student_ID : String - Lecturer_ID : String | 0.."
| 0.1

ADAPTER PATTERN

Below is the adapter pattern of our system:

Module Language Schedule
-Mame 1 N . 1 -Dates
o I S -Mame_of_language - Everts
- Description - Content
-Times
- Lecturer s
Viewed
= F
Viewed Selected
by by
. =
1 0... viewed
Announcements User by 1
0. ¥
- Heading Name Timetable
- Text 0 +| -Surmame - Dates
—Author - Phone - Events
Y - Address - Times
1 0.* I= .
) - Email Address
Viewed 1
[by)‘I’ - Password
written Yy
by
Administrator Student Lecturer
0.* -Admin_ID - Student_ID -Lecturer_ID
0.1
53
edited

by

Iz created
by

ORGANISATIONAL PATTERN

Below is the organisational structure of our system:

User |
| — |

Student ‘ I Staff ‘ Admin ‘
Other Student ‘ IT Student ‘ Seftings ‘ All Data
Preferences %{

v Y L J
Schedule }(— Roster }<7 Maodule
e i - .

Timetable ‘

Creates

4

Timetable

Log-In

Module

-Course

-Lecturer

B

STRATEGY PATTERN

Below is the strategy pattern of our sys’rem

Preferences

Updates

A 4

Student .
-Student number
i -Module <
-Course
Lecturer ¥ ‘User
-Module Is -Username
-Lecturer number = -Password
Is
4
Admin
Edits
Announcements

4

Languages

W\ X
R\ i~ e mw._.wEOZOmIQ
N> = -
LY . .rn4 B °
> P - 3 3 &
Rl ,) 5 . = 3 : i3
T A]
| { . :
y ’ ‘o K ¥ R ®
“ . \ _ 4
\ Y ¢
{ .. g
& g0 v &
: " B S

CONDUCT SYSTEM TEST

OmniCal’s system test results are laid out below:

o R

Databases

In-house software

Existing software

CONDUCT SYSTEM TEST (Continued)

Test Data:
- Data stored in textfiles for various language options - Data stored in database in various tables:
o omnical licence agreement Afrikaans o administration

omnical licence agreement English o course

omnical licence agreement Zulu o module

frmHome Afrikaans o period

frmmHome English o staff

frmHome Zulu o student

frmLicenseAgreement English
frmLicenseAgreement Afrikaans
frmLicenseAgreement Zulu
frmmLogin English

frmmLogin Afrikaans
frmnLogin Zulu
frmMeetTheTeam Afrikaans
frmMeetTheTleam English
frmMeetTheTeam Zulu
frmPreferences English
frmPreferences Afrikaans
frmPreferences Zulu
frmRegisteration Afrikaans
frmRegisteration English
frmRegisteration Zulu
frmSettings Afrikaans
frmSettings English
frmSettings Zulu
frmUpdateProfile Afrikaans
frmUpdateProfile English
frmUpdateProfile Zulu

0O OO0 0O O 0O O OO0 O0OO0OOo0OOoODO0OOoODOoOOoOO OB OO OoOouOo o oo

CONDUCT SYSTEM TEST (Concluded)

Problems and issues
- Without intfernet connection, the database
cannot be accessed

Problems revealed during testing
- Internet connection may be a problem

Verification of system operation
- The parts of the system that operate with test
data operate correctly

PREPARE CONVERSION PLAN

End-user Training:
- End-user training will be simple and easy to accomplish, through the
use of infegrated help pages and an intuitive query page, allowing

users to ask questions or report problems to a helpful OmniCal
employee.

Conversion Strategy:

- The OmniCal system will most likely be converted using the Staged
conversion sfrategy, being released in versions, where each new
version will be converted to in parallel with each previous version
slowly being replaced. This allows us, as the OmniCal feam, time to

discover all problems and issues with any new releases before they
bbecome major problemes.

INSTALL DATABASES

The following databases have been installed:

OmniCal Database installed

TRAIN USERS

User help/instruction file

Once the program is opened you (the user) have a choice of the following:
1. Enter user type and detaqils to login (home)

2. Choose to register (Proceed 1o register form)

3. The user may at any point in the login screen click on file and change the
language of the program

Here the user may enter their details and sign up to continue with the creation of
the timetable.

This is the main hub of the program, linking all essenfial forms in one simple to use
form. On the main screen of this form the user will see their timetable. On this screen
the user may create, edit or remove any timetable.

CONVERT TO NEW SYSTEM

Our system conversion was successful and was converted from Delphi to C#
- We started hosting our MySQL Database online
- We created a mobile application

- The physical system and application is now available for download from our
website:

jacquiim2.wixsite.com/omnical/download

BUILD TEST NETWORKS

There are a number of hardware components and mechanisms that demand to be
encompassed inside the testing network. A number of normal hardware components
and mechanisms that are to be included inside the examination nature for OmniCal are:

- Network Adapters

- USB Adapters for User input
- Mouse Devices

- Printers

- Monitor

- Touchpad

Networking Services:

- Windows Server 2003 networks is an option depending on who will be using or giving
the Omnical service to the Student

- And Mysql server

AND TEST DATABASES

OmniCal makes use of one database, created in MySQL

_] roster v _] module v _] calendarevents ¥ _J announcements ¥
module_module_code VARCHAR(7) module_code VARCHAR(7) userlD VARCHAR(S) announcements_id INT(3)
i 2y
it INT(1) description TEXT date VARCHAR(20) student_number VARCHAR(E)
v 201
venue VARCHAR(45) credits INT(2) start VARCHAR(S) date VARCHAR (20)
R ey
monday VARCHAR(S) H 7 language VARCHAR(3) end VARCHAR(S) start_time VARCHAR(S)
| v o] i i icy
tuesday VARCHAR(S) | semester TEXT event ¥ ARCHAR(45) end_time VARCHAR(5)
v raEE)
wednesday VARCHAR(S) Jl year INT(1) venue VARCHAR (20) detalls VARCHAR(255)
M v r100)
thursday VARCHAR(S) staff_number VARCHAR(3) > venue VARCHAR{100)
» 1
friday VARCHAR(S) > starred VARCHAR(1)
v 1)
language VARCHAR(3) ? m preferences v seen VARCHAR(1)
RV .,
roster_id INT{11) I preference_id INT(11) description VARCHAR(255)
>
@ module_module_codel YARCHAR(T) | default_language V ARCHAR(45)
“#module_language VARCHAR(3) I all_announcements V ARCHAR(45)
> | COUrsE_announcements V ARCHAR(45)] staff v
| " v N
| show_date VARCHAR(45) " staff_number VARCHAR(S)
1 automatic_time_zone Y ARCHAR{45) -i password TEXT
*)
time_zone VARCHAR(45) | -
m - v _ schedule v = v | initials TEXT
min student_number ¥ ARCHAR{S) |
schedule_id INT(11) name TEXT
admin_id INT{4) = b @ staff staff ber VARCHAR(S) |
- ¥ module_code VARCHAR(T) SiatstatnUmBer ¥ b | surname TEXT
admin_password V ARCHAR(45) B s @ student_student_number VARCHAR(E) | | i v)
student_number VARCHAR(S) = = — id_number VARCHAR(13)
time_changed VARCHAR(4S) - e » Le TExT
VARCHAR{45) course TE
[P_address Y ARCHAR (45) venue N gs . .
S day VARCHAR(45) | cellphone_number VARCHAR(10)
period_id V ARCHAR(S) _ll. email_address TEXT
 period_period_id VARCHAR(S) T address TEXT
» | _lstudent v ity TEXT
v + student_number VARCHAR(E) postal_code VARCHAR(4)
| qui v | | password TEXT >
gui_id VARCHAR(3) I I initials TEXT
login_background VARCHAR (100} | | name TEXT
t back d VARCHAR(100) | | :I course v
Eam_packground ¥ Loy TEXT
fn - I I surname course_name V ARCHAR(255)
tVARCHAR(20) id ber VARCHAR(13)
bt]) i | | ofumber ¥ e faculty VARCHAR(100)
efault |anguage VARCHAR{10) TEXT
> I I Fodrse school VARCHAR({ 100)
_ Iphy ber VARCHAR(10)
| cElphione_number ¥ R programme VARCHAR(100)
| email _address TEXT >
|
| address TEXT
" requests v I city TEXT
request_jd INT(3) * postal_code VARCHAR(4)
requesting_num ber VARCHAR(S) m period ¥ LoginCount INT(11)
requested_num ber VARCHAR(S) period_id ¥ ARCHAR(S) @ schedule_schedule_id INT(11)
status VARCHAR(8) time TEXT ¥ schedule_student_number VARCHAR(E)

>

INSTALL TEST NEW SOFTWARE

The following software has been installed and ftested by the systems analyst and the project manager

- New Software
o MySQL — Installed and tested
o PDF - Installed and tested

TEST NEW PROGRAM

Writing and testing of the program commenced and was executed through C#

W\ X
R\ i~ e mw._.wEOZOmIQ
N> = -
LY . .rn4 B °
> P - 3 3 &
Rl ,) 5 . = 3 : i3
T A]
| { . :
y ’ ‘o K ¥ R ®
“ . \ _ 4
\ Y ¢
{ .. g
& g0 v &
: " B S

o TR

SYSTEM OPERATIONS AND SUPPORT CHECKLIST

The following represents the checklist we used to complete our system operation and support

TASKS

System maintenance

Validate problems

Benchmark Program

Study and Debug the program
Test the Program

System Recovery

Technical support
Roufinely observations

User satisfaction surveys
Training
Log enhancements ideas

System enhancement

Analyse Enhancements request
Quick Fix methods

Recover existing physical system

N BN [N

<\

N

NS

B <\ B <

METHOD USED

Code

Build the program
Step through

Build and run program

Reload from Google Drive as well as through the admin option on the system

Through admin on the system

The survey is found on the website (it is updated regularly) and users are made
aware about the survey through social media

In form of the help file and user manual

This is done through email and Wix nofifications

Through email notificafions as well as direct Wix notifications

Administration will demonstrate quick fixes directly on the system

This can be done through the Google Drive

